Централизованное тестирование по физике, 2012

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Прибор, предназначенный для измерения скорости тела, — это:

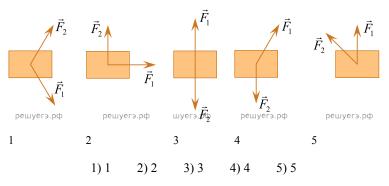
1) весы

2) вольтметр

3) часы

4) спидометр

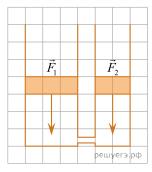
5) термометр


2. В момент времени $t_0 = 0$ с два тела начали двигаться вдоль оси Ox. Если их координаты с течением времени изменяются по законам $x_1 = -14t + 3.5t^2$ и $x_2 = 10t + 1.5t^2$ (x_1, x_2 — в метрах, t — в секундах), то тела встретятся через промежуток времени Δt , равный:

1) 10 c

- 2) 11 c
- 3) 12 c
- 4) 13 c 5
 - 5) 14 c
- **3.** Трасса велогонки состоит из трех одинаковых кругов. Если первый круг велосипедист проехал со средней скоростью $<v_1>=23$ км/ч, второй $<v_2>=23$ км/ч, третий $<v_3>=14$ км/ч, то всю трассу велосипедист проехал со средней скоростью <v>=10 пути , равной:

1) 18 км/ч


- 2) 19 км/ч
- 3) 20 км/ч
- 4) 21 км/ч
- 5) 22 км/ч
- **4.** К телу приложены силы \vec{F}_1 и \vec{F}_2 , лежащие в плоскости рисунка. Направления сил изменяются, но их модули остаются постоянными. Наибольшее ускорение a тело приобретет в ситуации, обозначенной на рисунке цифрой:

5. Камень, брошенный горизонтально с некоторой высоты, упал на поверхность Земли через промежуток времени $\Delta t=1.5$ с от момента броска. Если модуль скорости камня в момент падения $\upsilon=25$ м/c, то модуль его начальной скорости υ_0 был равен:

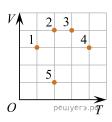
- 1) 10 m/c
- 2) 12 m/c
- 3) 15 м/с
- 4) 18 m/c
- 5) 20 m/c

6. Два соединенных между собой вертикальных цилиндра заполнены несжимаемой жидкостью и закрыты невесомыми поршнями, которые могут перемещаться без трения. К поршням приложены силы \vec{F}_1 и \vec{F}_2 , направления которых указаны на рисунке. Если модуль силы $F_1=18$ H, то для удержания системы в равновесии модуль силы F_2 должен быть равен:

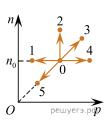
1) 8 H 2) 12 H

12 H 3) 18 H

4) 27 H


5) 40 H

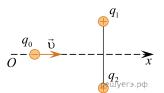
7. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:


Измерение	Температура, К	Давление, кПа	Объем, л
1	290	161	15
2	310	172	15
3	330	183	15
4	350	194	15
5	370	205	15

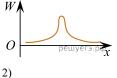
Такая закономерность характерна для процесса:

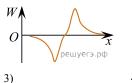
- 1) адиабатного
- 2) изобарного
- 3) изотермического 5) циклического
- 4) изохорного
- **8.** На V-T диаграмме изображены различные состояния некоторого вещества. Состояние с наибольшей средней кинетической энергией молекул обозначено цифрой:

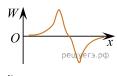
- 1) 1 2) 2 3)3
- **9.** На рисунке изображена зависимость концентрации n молекул от давления р для пяти процессов с идеальным газом, количество вещества которого постоянно. Изохорное нагревание газа происходит в процессе:

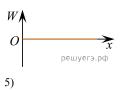


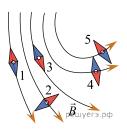
- 1) 0 12)0-2
- 3)0-3
- 5)0-5
- **10.** Если масса электронов, перешедших на эбонитовую палочку при трении ее о шерсть, m $= 18.2 \cdot 10^{-20}$ кг, то заряд палочки q равен:
 - 1) -24 нКл
- 2) -26 нКл
- 3) -28 нКл
- 4) -30 нКл


5) 5


5) -32 нKл

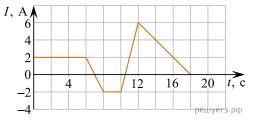

11. Точечный отрицательный заряд q_0 движется вдоль серединного перпендикуляра к отрезку, соединяющему неподвижные точечные заряды q_1 и q_2 (см. рис.). Если $q_1 = q_2$, то график зависимости потенциальной энергии взаимодействия W заряда q_0 с неподвижными зарядами от его координаты x приведен на \overline{O} рисунке, обозначенном цифрой:

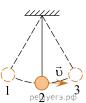




Условие уточнено редакцией РЕШУ ЦТ.

- 1) 1
- 3)3
- - 5) 5
- 12. Пять резисторов, сопротивления которых $R_1 = 120 \, \text{Om}, \, R_2 = 30 \, \text{Om}, \, R_3 = 15 \, \text{Om}, \, R_4 = 120 \, \text{Om}$ 60 Ом и $R_5 = 24$ Ом, соединены параллельно и подключены к источнику постоянного тока. Если в резисторе R_4 сила тока $I_4 = 0.15$ A, то сила тока I в источнике равна:
 - 1) 1.5 A
- 2) 2,4 A 3) 3,5 A
- 4) 4,6 A
- 5) 4,8 A

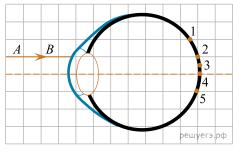

13. В магнитном поле, линии индукции \vec{B} которого изображены на рисунке, помещены небольшие магнитные стрелки, которые могут свободно вращаться. Южный полюс стрелки на рисунке светлый, северный — темный. В устойчивом положении находится стрелка, номер которой:


- 1) 1 2) 2

5) 5

14. На рисунке изображен график зависимости силы тока I в катушке индуктивности от времени t. Если индуктивность катушки $L = 2.5 \, \Gamma$ н, то собственный магнитный поток Φ , пронизывающий витки катушки, в момент времени t = 14 с равен:

- 1) 1.6 Вб
- 2) 2 B₆
- 3) 4 Вб
- 4) 6.2 B₀
- 5) 10 B₀
- 15. Математический маятник совершает свободные гармонические колебания. Точки 1 и 3 — положения максимального отклонения груза от положения равновесия (см. рис.). Если в точке 2 фаза колебаний маятника $\varphi_2 = \pi$, то в точке 3 фаза колебаний φ_3 будет равна:


Условие уточнено редакцией РЕШУ ЦТ.

1) 0 2)
$$\frac{\pi}{4}$$
 3) π 4) $\frac{3\pi}{2}$ 5) 2π

4)
$$\frac{3\pi}{2}$$

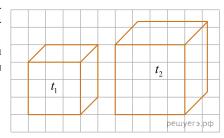
16. На рисунке изображен глаз человека. Если луч света АВ пройдет через точку, обозначенной цифрой ..., то у человека дефект зрения — близорукость.

Условие уточнено редакцией РЕШУ ЦТ.

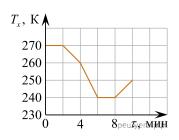


- 1) 1 2) 2
 - 3)3
- 5) 5
- 17. Если для некоторого металла минимальная энергия фотонов, при которой возможен фотоэффект E_{\min} = 4 эB, то при облучении этого металла фотонами, энергия которых E = 7 эB, то максимальная кинетическая энергия фотоэлектронов E_{κ}^{max} равна:

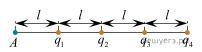
 - 1) 2 9B 2) 3 9B 3) 4 9B 4) 7 9B
- 5) 11 ₃B
- **18.** Число нейтронов в ядре одного из изотопов кобальта N = 31, а удельная энергия связи $\varepsilon =$ 8,07 МэВ/нуклон. Если энергия связи нуклонов в ядре этого изотопа $E_{\rm CB} = 468$ МэВ, то его атомный номер Z равен:
 - 1) 12
- 2) 16
- 3) 27


4) 32

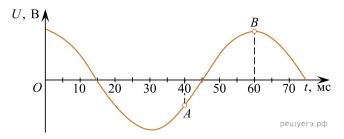
- 5) 42
- **19.** Диаметр велосипедного колеса d = 66 см, число зубьев ведущей звездочки $N_1 = 22$, ведомой — $N_2 = 21$ (см. рис.). Если велосипедист равномерно крутит педали с частотой v = 92 об/мин, то модуль скорости V велосипеда равен ... $\kappa m/\mathbf{q}$.



- **20.** К бруску массой m = 0.50 кг, находящемуся на гладкой горизонтальной поверхности, прикреплена невесомая пружина жесткостью k = 25 H/м. Свободный конец пружины тянут в горизонтальном направлении так, что длина пружины остается постоянной (l=17 см). Если длина пружины в недеформированном состоянии $l_0 = 13$ см, то модуль ускорения бруска равен ... дм/ c^2 .
- **21.** На дне вертикального цилиндрического сосуда, радиус основания которого R = 10 см, неплотно прилегая ко дну, лежит кубик. Если масса кубика m=215 г, а длина его стороны a=10 см, то для того, чтобы кубик начал плавать, в сосуд нужно налить минимальный объем V_{\min} воды (ho_{B} = 1,00 г/см³), равный ... **см**³.


- **22.** На невесомой нерастяжимой нити длиной l=98 см висит небольшой шар массой M=38,6 г. Пуля массой m=1,4 г, летящая горизонтально со скоростью \vec{v}_0 , попадает в шар и застревает в нем. Если скорость пули была направлена вдоль диаметра шара, то шар совершит полный оборот по окружности в вертикальной плоскости при минимальном значении скорости v_0 пули, равном ...**м/с** .
- **23.** Идеальный одноатомный газ, начальный объем которого $V_1 = 8 \text{ м}^3$, а количество вещества остается постоянным, находится под давлением $p_1 = 8 \cdot 10^5 \text{ Па}$. Газ охлаждают сначала изобарно, а затем продолжают охлаждение при постоянном объеме до давления $p_2 = 4 \cdot 10^5 \text{ Па}$. Если при переходе из начального состояния в конечное газ отдает количество теплоты Q = 9 МДж, то его объем V_2 в конечном состоянии равен ... \mathbf{m}^3 .
- **24.** Два однородных кубика (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого кубика t_1 = 1,0 °C, а второго t_2 = 92 °C, то при отсутствии теплообмена с окружающей средой установившаяся температура t кубиков равна ... °C.

25. На рисунке изображен график зависимости температуры $T_{\rm X}$ холодильника тепловой машины, работающей по циклу Карно, от времени τ . Если температура нагревателя тепловой машины $T_{\rm H}=527$ °C, то максимальный коэффициент полезного действия $\eta_{\rm max}$ машины был равен ... %.



26. Четыре точечных заряда $q_1 = 5$ нКл, $q_2 = -5$ нКл, $q_3 = 6,3$ нКл, $q_4 = -20$ нКл расположены в вакууме на одной прямой (см. рис.). Если расстояние между соседними зарядами l = 40 мм, то в точке A, находящейся на этой прямой на расстоянии l от заряда q_1 , модуль на-

пряженности E электростатического поля системы зарядов равен ... $\kappa \mathbf{B}/\mathbf{m}$.

- **27.** Аккумулятор, ЭДС которого $\mathscr{E}=1,6$ В и внутреннее сопротивление r=0,1 Ом, замкнут нихромовым (c=0,46 кДж/(кг · K) проводником массой m=31,3 г. Если на нагревание проводника расходуется $\alpha=75\%$ выделяемой в проводнике энергии, то максимально возможное изменение температуры $\varDelta T_{\rm max}$ проводника за промежуток времени $\varDelta t=1$ мин равно ... **К**.
- **28.** Тонкое проволочное кольцо радиусом r = 4,0 см и массой m = 98,6 мг, изготовленное из проводника сопротивлением R = 0,40 Ом, находится в неоднородном магнитном поле, проекция индукции которого на ось Ox имеет вид $B_x = kx$, где k = 4,0 Тл/м, x координата. В направлении оси Ox кольцу ударом сообщили скорость, модуль которой $v_0 = 4,0$ м/с. Если плоскость кольца во время движения была перпендикулярна оси Ox, то до остановки кольцо прошло расстояние s, равное ... **см**.
- **29.** Напряжение на участке цепи изменяется по гармоническому закону (см. рис.). В момент времени $t_{\rm A}=40$ мс напряжение на участке цепи равно $U_{\rm A}$, а в момент времени $t_{\rm B}=60$ мс равно $U_{\rm B}$. Если разность напряжений $U_{\rm B}-U_{\rm A}=70$ В, то действующее значение напряжения $U_{\rm A}$ равно ... **B**.

30. На дифракционную решетку падает нормально параллельный пучок монохроматического света длиной волны $\lambda=400$ нм. Если максимум второго порядка отклонен от перпендикуляра к решетке на угол $\theta=30,0^\circ$, то каждый миллиметр решетки содержит число N штрихов, равное ...

8/8